请选择 进入手机版 | 继续访问电脑版

金猪论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 51|回复: 0

机器学习的分类

[复制链接]

4

主题

4

帖子

203

积分

网站编辑

Rank: 8Rank: 8

积分
203

活跃会员热心会员

发表于 2021-5-3 11:39:01 | 显示全部楼层 |阅读模式
(1) 有监督学习(Supervised Learning) :当我们已经拥有–些数据及数据对应的类标时,就可以通过这些数据训练出一个模型,再利用这个模型去预测新数据的类标,这种情况称为有监督学习。有监督学习可分为回归问题和分类问题两大类。在回归问题中,我们预测的结果是连续值;而在分类问题中,我们预测的结果是离散值。常见的有监督学习算法包括线性回归、逻辑回归、K-近邻、朴素贝叶斯、决策树、随机森林、支持向量机等。

(2) 无监督学习(Unsupervised Learning):在无监督学习中是没有给定类标训练样本的,这就需要我们对给定的数据直接建模。常见的无监督学习算法包括K-means、EM算法等。

(3) 半监督学习(Semi-supervised Learn-ing):半监督学习介于有监督学习和无监督学习之间,给定的数据集既包括有类标的数据,也包括没有类标的数据,需要在工作量(例如数据的打标)和模型的准确率之间取一个平衡点。

(4)强化学习( Reinforcement Learning):从不懂到通过不断学习、总结规律,最终学会的过程便是强化学习。强化学习很依赖于学习的“周围环境”,强调如何基于“周围环境”而做出相应的动作。
————————————————
原文链接:https://blog.csdn.net/qq_43328040/article/details/107094840
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|金猪论坛 |网站地图

GMT+8, 2021-5-14 18:00 , Processed in 0.128658 second(s), 32 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表